24x^2+7x^2=100^2

Simple and best practice solution for 24x^2+7x^2=100^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 24x^2+7x^2=100^2 equation:



24x^2+7x^2=100^2
We move all terms to the left:
24x^2+7x^2-(100^2)=0
We add all the numbers together, and all the variables
31x^2-10000=0
a = 31; b = 0; c = -10000;
Δ = b2-4ac
Δ = 02-4·31·(-10000)
Δ = 1240000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1240000}=\sqrt{40000*31}=\sqrt{40000}*\sqrt{31}=200\sqrt{31}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-200\sqrt{31}}{2*31}=\frac{0-200\sqrt{31}}{62} =-\frac{200\sqrt{31}}{62} =-\frac{100\sqrt{31}}{31} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+200\sqrt{31}}{2*31}=\frac{0+200\sqrt{31}}{62} =\frac{200\sqrt{31}}{62} =\frac{100\sqrt{31}}{31} $

See similar equations:

| 144=10x^2 | | (3y-0.5)-4.5=y+1 | | 3(1-4x)=6(0,5-2x) | | d/2/3=3/5 | | v6=3/4 | | 16f-4=9f-7 | | t10=10 | | 8.1-4.4=y | | 12p=p+4+p | | x^2+13/2x-42=0 | | t-17=28 | | 2x^2+4x+4=144 | | 9x-25+8x-6=180 | | 9y-77=8 | | d+30=56 | | t-30=20 | | 9x+23+10+6=90 | | w-7=89 | | 5(2x-7)=4x-11 | | 4x+9/5x=261 | | 2(1-3x)=1,5(1-4x) | | 6(4x−1)=12(2x+3) | | x-39=3/4x-39=-1/4x | | x-39=3/4x-39=-1/4x156=x | | 9x+23+10+6=180 | | 10x-4=5x-11 | | 75x+7=16 | | -11b-9+20b=9b-9 | | 18m-1=18m+2 | | 8x-5=x+28 | | -(4x-1)-(-3x-5)=3 | | y-14+12y=-14+13y |

Equations solver categories